A material flow modelling tool for resource efficient production planning in multi-product manufacturing systems

Research Area:
Resource Efficiency


Procedia CIRP

SMART Authors:
Shahin Rahimifard , James Colwill , Alessandro Simeone , Oliver Gould

See all publications

Resource efficiency is recognized as one of the greatest sustainability challenges facing the manufacturing industry in the future. Materials are a resource of primary importance, making a significant contribution to the economic costs and environmental impacts of production. During the manufacturing phase the majority of resource efficiency initiatives and management methodologies have been concerned primarily with improvements measured on an economic basis. More recently, the need for even greater levels of resource efficiency has extended the scope of these initiatives to consider complete manufacturing and industrial systems at an economic and environmental level. The flow of materials at each system level relates directly to material efficiency, which in turn influences the consumption of other resources such as water and energy. Initial research by the authors in material efficiency focused on material flow, proposing a material flow assessment approach, comprising a systematic framework for the analysis of quantitative and qualitative flow in manufacturing systems. The framework was designed to provide greater understanding of material flow through identification of strengths, weaknesses, constraints and opportunities for improvement, facilitating the implementation of improvement measures for greater efficiency in both environmental and economic terms. This paper presents an extension of this work, applying the material flow assessment framework to a complex multi-product and multi-site manufacturing system scenario. It begins with a description of the Resource Efficient Scheduling (RES) tool that supports the implementation of this framework. The tool models the interactions of quantitative and qualitative material flow factors associated with production planning and the resulting impacts on resource efficiency. This provides a more detailed understanding of the economic and resource impacts of different production plans, enabling greater flexibility and the ability to make better informed decisions. Finally a case study is presented, highlighting the application of the tool and its potential benefits.

View Publication