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Abstract. Manufacturing decisions are currently made based on considerations
of cost, time and quality. However there is increasing pressure to also routinely
incorporate environmental considerations into the decision making processes.
Despite the existence of a number of tools for environmental analysis of manu‐
facturing activities, there does not appear to be a structured approach for gener‐
ating relevant environmental information that can be fed into manufacturing
decision making. This research proposes an overarching structure that leads to
three approaches, pertaining to different timescales that enable the generation of
environmental information, suitable for consideration during decision making.
The approaches are demonstrated through three industrial case studies.
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1 Introduction

Globally, factories account for roughly one third of energy use [1], and one third of
energy related CO2 production [2]. This is in addition to other air, land and water emis‐
sions, chemical use and demand for materials. The world’s factories are a hotspot of
human induced environmental impacts and therefore require effective environmental
management programmes.

In contrast to this need, current manufacturing management systems and related
decision making are optimised for cost effectiveness, time efficiency (productivity) and
quality control [3], but not environmental impacts. These complex networks of data and
information systems enable manufacturers to remain competitive by making informed
short-term decisions and by forecasting over longer time scales. However, despite legis‐
lative developments in this area (e.g. [4]), environmental considerations are not routinely
included in this planning (Fig. 1), and it is becoming clear that their inclusion could lead
to a significant reduction in environmental impacts [5]. In this work, an analysis of
industrial decision making is contrasted with modern approaches for generation of
consideration of environmental data in manufacturing decisions.
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Fig. 1. Opportunities for the inclusion of environmentally related data in industrial decision
making.

A gap in the availability of environmental data is identified, with a three timescale
(short, medium and long) approach proposed to enable more systematic generation of
environmental information to feed into decision making within manufacturing.

Correspondingly a number of case studies are presented demonstrating the genera‐
tion of eco-intelligent information across these timescales. The paper concludes with a
discussion of how the approaches described in this work can be applied more routinely
to the wider industry.

2 Literature Review

2.1 Manufacturing Decision Making

Enterprise Resource Planning (ERP) is the generic term used for modern manufacturing
management infrastructures (not just the software component) whereby there is one set
of rules for balancing supply and demand, linking customers and suppliers in one chain,
employing proven business processes for decision making, and providing cross-func‐
tional integration across departments and activities [6]. Because of its effectiveness,
some form of ERP can be found in almost every manufacturing company worldwide,
and the provision of the software and support for ERP (e.g SAP, Oracle) is in itself a
global multi-billion dollar business [7]. Due to the perceived low economic value of
environmental performance, none of these systems are configured to allow comprehen‐
sive consideration of environmental impacts in decision making. In order to be able to
consider environmental impacts in production planning and control, there is a need to
measure and compare environmental metrics but these are difficult to define and vary
widely depending upon specific manufacturing activities.

Clearly within manufacturing companies there is a substantial amount of information
that is created on a daily basis which is used across many departments to enable efficient,
profitable operation of their production plants [8]. Despite much of this data being used to
support manufacturing activities across production, logistics, customer promising, etc., there
are other, environmentally focused, decisions that could be supported using this data. For
example, by comparing production cell energy consumption against product throughput
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would yield an indication of product energy embedded by that cell – which can be used as
a benchmark to highlight and investigate periods of over-consumption. By utilising this
latent capability in environmentally related data, there are often opportunities for reducing
environmental impact [9].

2.2 Environmental Information

The idea of incorporating environmental considerations into manufacturing activities is
not new. The establishment of Environmental Management Systems (EMS) have
allowed manufacturers to make decisions on their activities with respect to environ‐
mental performance [10]. In addition there are a number of both complex and simplified
LCA type tools (SimaPro [PRé Consultants], CES [Granta Design], etc.) which can be
and are used by manufacturing companies to assess the environmental impact of the
products they make, and thus allow them to improve product design (‘design for X’
approaches) to reduce resource consumption and avoid other negative environmental
impacts [11]. However LCA tools still only support slow, progressive improvements to
manufacturing activities rather than optimising in the shorter term.

Not only is there a complexity in understanding and implementing the soft (infor‐
mation) side of incorporating environmental considerations into decision making, but
there are issues regarding collecting or accessing sufficient information (both real-time
and longer term) to understand existing performance and thus influence decision in
planning and control. Such a network of information within a manufacturing enterprise
is typically only partially present. In particular the problems manufacturers face with
real-time energy metering, management and optimization has been addressed [12, 13],
and its relative low importance (in management agendas) coupled with a range of tech‐
nical and economic implications. In reality, there is a lot of usable data generated within
factories, but without the infrastructure to interpret and communicate eco-performance
metrics, it is not possible to influence operation and planning decisions.

As a sign of progress within industry, smart metering has been used to help inform
decisions by tracking not only the total electrical work and consumed energy, but also
the characteristics of specific power consumption over time [14]. Subsequently, research
has focused on smart metering systems which involve the use of sensors, processors and
analysers to capture, transfer, identify and resolve energy and resource flows in manu‐
facturing systems [15]. Unfortunately however, although some of this information could
be used for the assessment of environmental impact, it currently is not due to the lack a
suitable infrastructure.

This highlights a need for a methodical approach to information gathering within
factories, and for decision makers to have access to appropriate data, and be equipped
with the ability to process this data such that it can be fed into decision making processes.
Only through these capabilities can manufacturers have the opportunity to improve their
environmental performance through improved decision making.
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3 Eco-Intelligent Information

Manufacturing decisions require the varied approaches to information processing
depending upon the level at which they are taken [8] – clearly manufacturing decision
at the machine level will have different requirements to those taken at the enterprise
level as has been reported for manufacturing energy management [16]. Therefore when
considering the generation of environmental data to feed into decision-making, a range
of timescales (roughly corresponding to different manufacturing levels) with appropriate
methodologies must be defined. In the current research, manufacturing decisions are
segregated into short, medium, and long timescales pertaining to seconds-hours, hours-
months and months-years respectively.

The fundamental thesis being that short-term decisions (such as machine optimisa‐
tion) require the availability of near real-time data for increased autonomy, medium term
decisions (such as maintenance scheduling) require suitable modelling approaches based
on appropriate key performance indicators (KPI), whilst long term decisions (such as
heavy investments in capital equipment) require forecasting of future impacts. The
proposed structure for eco-intelligent information generation is shown in Fig. 2.

Fig. 2. Eco-intelligent information generation

For the three different timescales the data requirements and processing into infor‐
mation are quite different. There will be variations in the type of data, amount of data,
speed of acquisition and processing required, accuracy and complexity, repetition rate,
use of intelligence (natural or artificial), importance to a company amongst many others.
It is therefore not suitable to consider all decisions using same approach and conse‐
quently three approaches relating to the different timescales are presented and described
in the remainder of this section.
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3.1 Short-Term Decision Making

Within the short term decision making timescale the research scope seeks to minimise
a set of environmental factors in a manufacturing process by monitoring specific vari‐
ables using the most appropriate sensing units, with the possibility of using intelligent
decision making support systems.

The first step of the approach (Fig. 3) is the analysis of the manufacturing process
under investigation. This phase is aimed at identifying the aspects of the process and
highlighting the related environmental impacts. The problem definition phase results in
the identification of the environmental factors to be minimised.

At this point, further consideration about the process needs to be undertaken, clas‐
sifying which variables can be actively controlled and which variables can be monitored.
The sensing unit selection considers the physical and chemical aspects of the process,
taking into account commercial availability. Prior to any industrial implementation, the
eco-intelligent process monitoring approach requires extensive experimental work in
order to calibrate the system and to obtain reliable, repeatable results.

Fig. 3. Short-term decision making support framework
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Once the sensing units have been validated, the experimental setup can be defined,
along with a comprehensive experimental plan [17]. The data processing procedure is
finalised to extract important features to transform data into useful information [18]. The
most common methodologies involve time domain analysis, such as statistical features
[19] and Principal Components Analysis (PCA). Whenever time domain features are
not suitable, an alternative approach is the frequency domain analysis, such as Wavelet
Transform [20].

In terms of decision making support systems and paradigms, neural networks are
mainly used for pattern recognition, time series prediction and data fitting [21, 22]. Other
DM support systems include Fuzzy Logic paradigms [23], Genetic Algorithms (GA)
[24], and Ant Colony Optimisation (ACO) [25].

The decision support algorithm will be implemented using the processed data and
will generate a result.

3.2 Medium-Term Decision Making

The problem definition comprises of a comprehensive analysis of the manufacturing
process or system and is required to understand the aspects and the related environmental
impacts.

The proposed methodology (Fig. 4) starts with a characterisation of the environ‐
mental drivers to take into account. The next step is the problem formulation: here, the
framework aims at the identification of boundaries and targets according to the problem
description. In this respect, taking into account the nature of the problem, firstly identify
the decision variables, paying particular attention to units, and utilise them to formulate
the objective function.

Analogously, formulate the constraints, either logical or explicit to the problem
description by expressing them in terms of decision variables. At this point it is possible
to identify the data needed for the objective function and constraints.

The model identification is crucial phase of information generation for medium-term
decisions as it describes the structure of the problem and allows the definition of key
performance indicators (KPIs).

According to the specific task, the identification of a suitable algorithm to solve the
optimisation problem must be carried out. The most common categories of optimisation
algorithms, are the finitely terminating algorithms, such as Simplex [26], the iterative
methods, e.g. Conjugate Gradient [27], and the heuristic methods, such as Genetic
Algorithms [28] and Ant Colony Optimisation [29]. In this phase, the algorithm must
be adapted to the case study, considering the aspects highlighted in the first steps of the
framework.

A critical step in the optimisation process is the presentation of the solution in a
concise and comprehensible summary for stakeholders. In this phase, the results gener‐
ated need to be effectively comparable in terms of environmental performance in order
to quantify the benefit obtained with the optimisation.
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Fig. 4. Medium-term decision making support framework

3.3 Long Term Decision Making

There is a need to ensure that the outcomes of environmentally focussed strategic deci‐
sions, made over long timescales are in alignment with the greater business strategy [30].
However, in contrast to short and medium term decisions, rather than attributing envi‐
ronmental impact to existing processes or activities of an enterprise, it is more appro‐
priate to forecast and attribute environmental impact to activities required to support
and deliver a new business activities. Therefore the first and most difficult phase of the
process is planning, which incorporates the definition of the scope of the analysis (the
decision in question) and sets the boundaries of consideration (e.g. timescales, areas of
business, lifecycle stages) as shown in Fig. 5.
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Fig. 5. Long-term decision making support framework

Defining the scope, allows a comparison of different strategies that fulfil the same busi‐
ness need and thus allows a certain level of creativity within long-term decision making.
Devising the potential strategies to overcome the problem can only be undertaken by an
appropriate team from within a company and will be highly problem specific. Such guid‐
ance is outside the scope of this work.

Once potential strategies have been established, the boundary conditions, as described
above, allow the identification and quantification of aspects and impacts associated with
those solutions. Analysis of the aspects across the different manufacturing levels and life‐
cycle stages can be undertaken in a systematic manner (see [31] for example). There are a
number of tools that assist in the evaluation of environmental impacts, such as LCA and
EMS, as described in Sect. 2.2.

Depending upon information generated and the particular impacts considered and
appropriate technique for comparison of results [32] should be used and ranking of the
potential strategies carried out. The strategies with the best environmental performances
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should be compared against the broader business strategy before being considered along‐
side economic and social performance metrics. Outcomes from the implementation of the
strategy can be used to feed back into future long-term decision making analysis.

4 Case Studies

The following brief case examples demonstrate the application of the eco-intelligent
methodologies presented in Sect. 3.

4.1 Clean-in-Place Monitoring – Short Term

Clean-in-place (CIP) is a widely used technique applied to clean industrial equipment
without disassembly [33]. Cleaning food deposits, which contain both proteins and
minerals, is a complex process that involves interactions between surface, deposits and
detergent. It requires a multistage process, having many steps that may be controlled by
shear stress, mass transfer, and chemical reaction [33].

Existing CIP processes are time intensive and waste large amounts of energy, water,
and chemicals [34, 35]. Furthermore, it is estimated that on average, a food and beverage
plant will spend 20% of each day on cleaning equipment, which represents significant
downtime for a plant [35].

The purpose of this case study is to reduce the cleaning time, so it is necessary to
monitor the food traces left within the process tank (Fig. 6). Due to the chemical compo‐
sition of the food deposit to be monitored, (in this case) milk proteins, the sensing unit
selected was a digital camera endowed with UV light set [36].

Fig. 6. Clean-in-place experimental rig scheme

Data acquisition for this case study consists in the acquisition of a series of digital
images, through a time-lapse technology. Data processing is needed to assess the surface
fouling level within each digital image and allow the monitoring of the cleaning process.
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Image processing algorithms based on image segmentation and thresholding [37] were
employed for the quantification of remaining fouling.

The decision making associated to this research aims at optimising the cleaning
process and is specifically required to understand when each phase of the cleaning
process becomes redundant and automatically switch to the next phase.

4.2 Production Scheduling – Medium Term

In a food manufacturing plant, an inventory of 50 products was considered. An important
qualitative feature of many of the materials in the inventory was that they were a poten‐
tially hazardous contaminant if carried over between different production runs. These
materials were categorised into multiple different types of Potentially Cross Contami‐
nating Materials (PCCM). The content of each PCCM in each product was designated
according to content levels 0–3. The changeover cleaning protocols, defined by the
PCCM content of the former and latter product in a scheduled sequence, is defined in
[24]. In this case study the identification of the environmental factor is straight forward,
hence the cumulative change over time required (which includes water, energy and other
overheads) was used as a proxy environmental impact for overall resource consumption.
The production sequence is to be optimized for minimal cumulative resource consump‐
tion during changeovers.

Finding the optimal sequence of products with minimised resource consumption was
determined to be analogous to the asymmetric travelling salesman problem (ATSP) [24],
where each product was represented by a node and the ‘distance travelled’ between
nodes was represented by the changeover cleaning time. With the model identified,
expedient solving of the ATSP in this context was approached using a genetic algorithm
(GA) [24], which enables the determination of a near optimal solution of complex prob‐
lems using feasible computing resources.

The GA generated an optimal sequence for 50 products with the minimum change‐
over cleaning time requirement. Repeat implementation of the GA provides alternative
product sequences with equivalent total cleaning time. In this way, a selection of
optimum sequences may be performed.

4.3 Energy Efficient Business Modelling – Long Term

One of the long-term decisions faced by modern manufacturing companies is how best
to deliver value into the market. An increasing number of companies are moving towards
the delivery of product service systems (PSS) in place of the more traditional make-sell
business model [38]. PSSs have many potential economic, social and environmental
advantages. However, it is not always clear as to how beneficial a PSS may be, if at all,
in comparison to the make-sell alternative.

In this example a comparison of different business strategies for the provision of
steel roofing is made, with a particular focus on lifecycle energy requirements. In one
strategy the company supplies steel roofing panels via a traditional make-sell business
model, and in the other, supplies identical roof panels via a PSS business model. In the
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latter instance, the manufacturer is responsible for the panels’ maintenance throughout
their lifetime plus their end-of-life (EoL) recovery.

For fair comparison, the performance metric is set as energy per square meter per
year (MJ/m2yr) and the scope includes manufacture of the panels, use (maintenance)
and end-of-life recovery. In addition, the lifetime of the steel roofing for the make-sell
and PSS business strategies has been assumed to be 15 and 25 years respectively; the
PSS roofing having, on average, an extended lifetime due to a regular maintenance
schedule.

The energy requirement per square-metre per year of the roofing for the two business
strategies is shown in Table 1.

Table 1. Energy requirements considered through product life cycle for comparison between
make-sell and PSS business strategies for steel roofing

Energy contributor Make-Sell PSS
Manufacture
Production Energy 33 MJ/m2 * 33 MJ/m2 *

Σ(Process Energy + Plant
Energy)

145 MJ/m2 # 145 MJ/m2 #

ΣCorporation Energy 2 MJ/m2 # 4 MJ/m2 &

Use (maintenance) N/A
ΣCorporation Energy 2 MJ/m2yr &

End of Life
Production Energy –48 MJ/m2 #

ΣCorporation Energy 4 MJ/m2 &

Lifetime of panel 15 yr 25 yr
Performance metric 12 MJ/m2yr 7.5 MJ/m2yr
* = data calculated from physical material properties, # = data taken or inferred
from [39], & = data simulated from company/customer location

The energy demand for the manufacturing stage of the product represents the largest
energy outlay for the company, and so preserving this investment in energy (through
the use of additional energy during use and EoL) by adopting a PSS business strategy
becomes beneficial from an energy consumption standpoint.

Based on the analysis of energy requirements for each strategy, a decision is likely
to be made to proceed with the PSS business model. In this exemplifying study, only
one performance metric was considered: in a more detailed application it is likely that
a greater number of indicators would need to be calculated, considered and compared
with the wider business strategy.

5 Concluding Discussion

There is a need to more routinely incorporate eco-intelligent information into manufac‐
turing decision making if the industry is to reduce its environmental impacts whilst still
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meeting the need of consumers. Three approaches for the generation of eco-intelligent
information have been described that related to different types of manufacturing decision
(based on varying timescales). For short-term decisions (seconds to hours) under‐
standing the requirements for sensing and automation are important task. For medium
term decisions (hours to months) developing KPIs and associated data models is of
primary importance. In contrast, for longer term decisions (months to years) the key
challenge is in the problem definition and setting of system boundaries. Each approach
has been presented and demonstrated using three industrial case examples.

In summary the possibility of routinely incorporating environmental information
into manufacturing decision making across all timescales is possible, but requires mark‐
edly different approaches. Precisely how to compare eco-intelligent information with
economic and social considerations, remains an active topic of global research.
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