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A B S T R A C T

Experimental cutting tests on C45 carbon steel turning were performed for sensor fusion based

monitoring of chip form through cutting force components and radial displacement measurement. A

Principal Component Analysis algorithm was implemented to extract characteristic features from

acquired sensor signals. A pattern recognition decision making support system was performed by

inputting the extracted features into feed-forward back-propagation neural networks aimed at single

chip form classification and favourable/unfavourable chip type identification. Different neural network

training algorithms were adopted and a comparison was proposed.
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Introduction

The type and form of the produced chip is a critical aspect in
machining processes, which strongly influences the cutting
process stability: long chips can interfere with the machine tool,
the workpiece and the tooling and have harmful impacts upon the
material removal process and the product quality (Byrne et al.,
1995; Jawahir and van Luttervelt, 1993; Santochi et al., 1997;
Jemielniak and Otman, 1998; Barry and Byrne, 2002).

Small and broken chips are much simpler to handle, transfer, put
in storage and recycle yielding positive environmental impacts on
the manufacturing operations (Byrne et al., 2003; Santochi et al.,
1997; Kim et al., 2005; Andreasen and De Chiffre, 1998; Viharos
et al., 2003).

Machining processes which are likely to generate long
and continuous chips, such as turning operations, can make the
realization of an effectively functioning chip control a really
difficult task because of the scarcity of guidelines and methods
to forecast chip breakage and variations in chip breakability as
a consequence of modifications in cutting conditions (Andreasen
and De Chiffre, 1993, 1998; Segreto et al., 2005).

As a matter of fact, in the course of a metal cutting operation,
process condition modifications arising from tool wear develop-
ment, irregularity in work material properties, temperature
related issues, etc., can generate significant alterations of the chip
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type and form with detrimental consequences on the manufactur-
ing of the product. Accordingly, to prevent the formation of
unfavourable chip types and damages to the machine, the tooling
and the workpiece, sensor monitoring methods and chip form
control are highly desirable (Segreto et al., 2009).

When measuring a particular variable of a manufacturing
process, a single sensory data source for that variable may not
be able to meet all the monitoring performance requirements.
A solution to this problem is sensor fusion (Segreto and Teti,
2008) that combines multiple sensing units so that the resulting
data information is more complete than when these data
sources are used independently.

In this work, multiple digital signals obtained from sensor
monitoring during turning of C45 carbon steel were employed for
reliable chip form identification and monitoring (Teti et al., 2006a,b).

Sensor fusion paradigm through advanced signal processing,
characterization and feature extraction based on the principal
component analysis (PCA) algorithm (Krzanowski, 1988; Holland,
2008) was applied to the sensor signals (Simeone et al., 2013;
Segreto et al., 2012a,b). The extracted significant features
were used as input to cognitive decision making method
based on neural network pattern recognition (Hertz et al., 1991;
Segreto et al., 2013; D’Addona et al., 2011; Segreto and Teti, 2007)
through the use of diverse training algorithm.

Materials and experimental procedures

An experimental campaign of turning tests under dry
conditions (Fig. 1) was carried out on a carbon steel cylindrical
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Fig. 1. Experimental set-up general scheme.
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rod by using a coated Kennametal tool insert (model TNMG332P
KC 850), mounted on a standard SANDVIK tool holder (MTGNR/
L). The machine tool used for the cutting tests was a MAZAK CNC
turning lathe (Model Quick Turn 10N).

Seven chip form types (ISO, 1993) were generated by varying
the cutting parameters as shown in Fig. 2:

� snarled ribbon (1.3),
� long tubular (2.1),
� short tubular (2.2),
� long washer type helical (4.1),
� short washer type helical (4.2),
� connected arc (6.1),
� loose arc (6.2),
Table 1
Experimental turning test programme and related ISO chip form (vc = cutting speed; D

vc (m/min) DoC (mm) f (mm/rev) ID test CF ISO vc (m/min) DoC (mm) f (m

150 1.0 0.1 T1353 1.3 200 1.0 0.1 

0.2 T1354 2.1 0.2 

0.3 T1355 2.2 0.3 

0.35 T1356 4.1 0.35

0.4 T1357 4.1 0.4 

0.5 T1358 4.1 0.5 

1.2 0.1 T1347 1.3 1.2 0.1 

0.2 T1348 2.2 0.2 

0.3 T1349 6.1 0.3 

0.35 T1350 6.1 0.35

0.4 T1351 6.1 0.4 

0.5 T1352 6.1 0.5 

1.3 0.1 T1341 1.3 1.3 0.1 

0.2 T1342 2.2 0.2 

0.3 T1343 6.1 0.3 

0.35 T1344 6.1 0.35

0.4 T1345 6.2 0.4 

0.5 T1346 6.2 0.5 

1.4 0.1 T1335 1.3 1.4 0.1 

0.2 T1336 2.2 0.2 

0.3 T1337 6.1 0.3 

0.35 T1338 6.1 0.35

0.4 T1339 6.1 0.4 

0.5 T1340 6.2 0.5 

1.5 0.1 T1329 1.3 1.5 0.1 

0.2 T1330 2.2 0.2 

0.3 T1331 6.1 0.3 

0.35 T1332 6.1 0.35

0.4 T1333 6.1 0.4 

0.5 T1334 6.1 0.5 
The following process parameters values were selected:

� Cutting speed, vc = 150, 200, 250 m/min
� Feed rate, f = 0.1, 0.2, 0.3, 0.35, 0.4, 0.5 mm/rev
� Depth of cut, DoC = 1.0, 1.2, 1.3, 1.4, 1.5 mm

By combining the cutting parameters reported above, a total of
90 turning tests were performed and summarized in Table 1.

Advanced signal processing through principal components
analysis

An advanced signal processing technique, based on the
principal component analysis (PCA), also known as the
oC = depth of cut; f = feed rate, CF = chip form).

m/rev) ID Test CF ISO vc (m/min) DoC (mm) f (mm/rev) ID test CF ISO

T1384 1.3 250 1.0 0.1 T1323 1.3

T1385 4.1 0.2 T1324 4.1

T1386 4.1 0.3 T1325 4.2

 T1387 4.1 0.35 T1326 4.2

T1388 4.1 0.4 T1327 4.2

T1389 4.2 0.5 T1328 4.2

T1378 1.3 1.2 0.1 T1317 1.3

T1379 4.1 0.2 T1318 4.2

T1380 2.2 0.3 T1319 2.2

 T1381 2.2 0.35 T1320 6.2

T1382 2.2 0.4 T1321 6.2

T1383 2.2 0.5 T1322 6.2

T1372 1.3 1.3 0.1 T1311 1.3

T1373 4.1 0.2 T1312 4.1

T1374 6.2 0.3 T1313 2.2

 T1375 6.2 0.35 T1314 6.2

T1376 6.2 0.4 T1315 6.2

T1377 6.2 0.5 T1316 6.2

T1366 1.3 1.4 0.1 T1305 1.3

T1367 4.1 0.2 T1306 4.1

T1368 6.2 0.3 T1307 6.2

 T1369 6.2 0.35 T1308 6.2

T1370 6.2 0.4 T1309 6.2

T1371 6.2 0.5 T1310 6.2

T1360 1.3 1.5 0.1 T1157 1.3

T1361 4.1 0.2 T1158 4.1

T1362 6.2 0.3 T1301 6.2

 T1363 6.2 0.35 T1302 6.2

T1364 6.2 0.4 T1303 6.2

T1365 6.2 0.5 T1304 6.2



Fig. 2. Chip form classification (ISO 3685, 1993).
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Karhunen–Loeve transformation (Holland, 2008), was imple-
mented to the digital sensor signals detected during the
experimental turning tests programme in order to obtain
important characteristic signal features (Simeone et al., 2013;
Segreto et al., 2012a,b).

The extraction of signal characteristic features from multiple
sensing systems and the projection of complex multivariate
data on lower dimensional spaces is of primary importance in
many information processing fields such as pattern recognition,
predictive modelling, industrial process fault diagnosis and
control, etc. (Krzanowski, 1988).

PCA is a multivariate technique that analyzes a dataset in
which observations are described by several inter-correlated
quantitative dependent variables. Its goal is to extract the
important information from the dataset, to represent it as a set of
new orthogonal variables called principal components, and to
display the pattern of similarity of the observations and of the
variables as points in maps.



Table 4
Eigenvectors matrix A for test case T1353.

Original variables Principal components (new variables)

1st 2nd 3rd 4th

Fx 0.8548 �0.4950 �0.1559 �0.0003

Fy 0.3023 0.7191 �0.6258 �0.0007

Fz 0.4218 0.4878 0.7643 0.0002

Ay �0.0004 �0.0003 0.0007 �1.0000

Table 5
Eigenvalues and explained variance for test case T1353.

Principal components Eigenvalues

(latent roots)

% Variance %

Cumulate

1st 1324.4228 80.8294 80.8294

2nd 216.4746 13.2114 94.0408

3rd 97.6414 5.9590 99.9999

4th 0.0024 0.0001 100.0000
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Principal component analysis basics

Assume that the output, X, from a multiple sensor system
yielding a series of p sensor signals is a data matrix n � p,
where n = number of sensor signal samplings, with covariance
matrix:

Si j ¼ covðXi; X jÞ ¼ E½ðXi � miÞðX j � m jÞ� (1)

where E is the expected value and mi = E(Xi) is the mean.
In PCA, a set of new variables is found which are uncorrelated

and whose variance is maximized. These new variables, Yi, are
called the principal components and are related to the original
variables, xi, by:

Yi ¼ ai1 � 1 þ ai2 � 2 þ � � � þ ai px p (2)

The first principal component, Y1, is found by setting a11 . . . a1n

so that the variance of Y1 is maximized; the second principal
component, Y2, is found by choosing a21 . . . a2n so that the variance
of Y2 is maximized for the data uncorrelated to Y1; and so on.

Principal component analysis application

In the application reported in this paper, the extracted signal
features consisted of the fused signals principal components
variance values represented by the sensorial data ‘‘latent roots’’
obtained by PCA (Holland, 2008).

To implement PCA, data adjustment must be carried out by the
mean centring of the data set. For this purpose, the mean of each
variable was calculated and subtracted from the original data to
generate a zero-mean distribution. Sensorial data matrices
representing signals oscillating around zero (i.e. deprived of their
continuous component and containing only frequency content
information) are obtained to ensure that the first principal
component describes the direction of maximum variance.

Each of the 90 experimental test cases is represented by a
8192 � 4 sensor fusion data matrix. The 4 columns correspond
to the 4 original sensor signals variables (Fx, Fy, Fz and Ay) and
the rows are the 8192 data samplings of the digital signals.
This data matrix is the data set for the PCA based sensor fusion,
as shown in Table 2 for test case T1353.

A covariance matrix along the 4 original variables (Fx, Fy, Fz and
Ay) was evaluated from each sensor signals data matrix,
generating a 4 � 4 matrix as shown in Table 3 for test case
T1353. By repeating this calculation for all test cases, 90 covariance
matrices were obtained.

From the covariance matrix of each test case, the eigenvectors
matrix, A, was calculated. The matrix A elements, aij, called
‘‘loadings’’, are obtained under the constraint:

a2
11 þ a2

12 þ a2
13 þ a2

14 ¼ 1 (3)
Table 2
Sensor fusion data matrix for test case T1353.

Samples Fx Fy Fz Ay

1 �53.1372 �12.9189 �15.3205 0.1000

� � � � � � � � � � � � � � �
8192 39.6362 26.1436 �4.3342 �0.0257

Table 3
Covariance matrix for test case T1353.

1023.1818 274.6762 413.6524 �0.3982

274.6762 271.1657 198.0914 �0.2271

413.6524 198.0914 344.1910 �0.1815

�0.3982 �0.2271 �0.1815 0.0027
Each row of matrix A represents one eigenvector and
each column contains the loadings (relationship weights) of each
new variable (principal component) on each original variable
(sensor signal). In Table 4, the eigenvectors matrix A for test case
T1353 is reported.

The eigenvectors define the directions of a new coordinate
system where the coordinates of the data points of each test case
are given by linear combinations of the original coordinates and
the loadings (weights) aij. The new positions of the data points in
the new system are called ‘‘scores’’.

Finally, the eigenvalues for each covariance matrix, also known
as ‘‘latent roots’’, were then calculated. The latent roots for test case
T1353 are shown in Table 5.

The evaluation of the covariance matrix eigenvalues was
used as a criterion for selecting the number of principal
components, according to (Cattell, 1966). The latent roots
represent the amount of variance explained by each principal
component and are required to decrease monotonically from
first to last principal component. The latent roots for test case
T1353 are plotted in the scree plot shown in Fig. 3: they explain the
highest variance along the 1st principal component axis, which
then decreases from the 2nd to the 4th principal component axis
were it becomes extremely low.

Fig. 4 shows the biplot of the first 3 principal components axes.
The biplot is a type of exploratory graph that allows information on
both data samples and variables of a data matrix to be displayed
graphically: data samples are displayed as points and variables as
vectors (Greenacre, 2010).
Fig. 3. Test case T1353: eigenvalues scree plot.



Fig. 4. Test case T1353: biplot of the first 3 principal components axes; the PCA

scores are displayed as red data points; the original variables Fx, Fy, Fz are displayed

as blue vectors.

Table 6
ISO-based chip form clusters and cluster elements.

Chip Form ISO Class

Continuous snarled 1.3 1

Long tubular chip 2.1 2

Long washer 4.1

Short washer 4.2 3

Short tubular chip 2.2

Connected arc 6.1 4

Loose arc 6.2
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In the biplot of Fig. 4, the scores (data points in the new
coordinate system) are displayed as red points and the original
variables (sensor signals) are displayed as blue vectors.

The biplot shows that sensor signals Fx, Fy and Fz (original
variables) are approximately aligned with the 1st, 2nd and 3rd
principal component axes, respectively, suggesting a good relation-
ship between these sensor signals and the first three principal
components (new variables). The Ay component is too small to be
visualized in the biplot because it has a lower order of magnitude
than the other variables, highlighting hence a smaller importance.

Neural network pattern recognition for chip form

Neural network (NN) pattern recognition based on sensor
fusion features extracted through PCA was utilized for decision
making on chip form categorisation under two classifying
perspectives: single chip form classification and favourable/
unfavourable chip type identification.

The 4 principal components, obtained through PCA application
to all test cases data matrices, were strongly related to the Fx, Fy, Fz

and Ay sensor signals, respectively. They supplied sensor fusion
features to construct 4-element feature vectors. In order to verify
the significance of the 4th principal component, also 3-element
feature vectors were built using the first 3 principal components
(related to Fx, Fy, Fz) and excluding the forth one (related to Ay).

The two sets of feature vectors made up two different training
sets for NN learning using diverse architectures for pattern
recognition (Hertz et al., 1991; Jemielniak et al., 2006).

Data for classification problems are set up for a NN by
organizing the data into two matrices, the input matrix and the
target matrix. The input matrix is made of the 3- or 4-elements
feature vectors (columns) and the 90 test cases (rows).

3-Layer feed-forward back-propagation NN (Fig. 5) were built
with the following architecture: input layer with a number of
nodes equal to the number of input signal feature (SF) vector
elements; hidden layer with a number of nodes equal to 16 or 32,
for 4-elements feature vectors, and 12 or 24, for 3-elements feature
vectors.
Fig. 5. Three layer feed-forward backpropagation neural network scheme for chip

form identification.
In the case of single chip form classification, the seven ISO
based types of produced chip forms were clustered into four
classes, as reported in Table 6. For this purpose, the target
vector contained one node, yielding a coded value associated
to one chip form: 1 for the chip form cluster to be recognized
and 0 for the other three chip form clusters. In this way, four
different neural networks were built, each one aimed at
discriminating one single chip form cluster.

In the case of favourable/unfavourable chip form identification,
single chip forms were grouped into two clusters according to their
being advantageous or disadvantageous:

� Favourable chip form cluster
� Chip form types 2.2, 4.2, 6.1, 6.2
� Unfavourable chip form cluster
� Chip form types 1.3, 2.1, 4.1

For this purpose, the NN target vector contains zeros for the
favourable chip forms and ones for the unfavourable chip forms.

The node-configurations implemented on each neural network
were: 4-16-1; 4-32-1; 3-12-1; 3-24-1.

Three different NN training algorithms were adopted for the
chip form classification, as explained below.

Leave-k-out algorithm

The leave-k-out method (LKO), (Teti et al., 2006a) used for used
for NN training and testing, was a supervised learning algorithm. In
this procedure, one homogeneous group of k patterns (here, k = 1),
extracted from the full training set, was held back in turn for
testing and the rest of the patterns was used for training.

During testing, the NN output is correct if the actual output, Oa,
is equal to the desired output, Od, �0.50% of the difference between
adjacent chip form numerical codes, which was always 1.

By setting error E = (Oa � Od), the chip form identification is
correct if �0.5 � E � +0.5; otherwise, a misclassification case
occurs.

The ratio of correct classifications over total training cases
yields the NN success rate (SR).

Levenberg –Marquardt algorithm

The Levenberg–Marquardt algorithm (Møller, 1993) was
designed to approach second-order training speed excluding the
Hessian matrix computation. When the performance function has
the form of a sum of squares (as is typical in training feedforward
networks), then the Hessian matrix can be approximated as

H ¼ JT J

and the gradient can be computed as

g ¼ JT e



T. Segreto et al. / CIRP Journal of Manufacturing Science and Technology 7 (2014) 202–209 207
where J is the Jacobian matrix that contains first derivatives of the
network errors with respect to the weights and biases, and e is a
vector of network errors. The Jacobian matrix can be computed
through a standard back propagation technique that is much less
complex than computing the Hessian matrix.

The Levenberg–Marquardt algorithm uses this approximation
to the Hessian matrix in the following update:

Xkþ1 ¼ Xk � ½JT J þ mI��1
JT e

When the scalar m is zero, this is just Newton’s method, using
the approximate Hessian matrix. When m is large, this becomes
gradient descent with a small step size. Thus, m is decreased after
each successful step (reduction in performance function) and is
increased only when a tentative step would increase the
performance function. In this way, the performance function will
always be reduced at each iteration of the algorithm.

Scaled conjugate gradient algorithm

The scaled conjugate gradient backpropagation,  developed
by (Møller, 1993) is a supervised learning algorithm for feedforward
neural networks that combines the model-trust region approach with
the conjugate gradient approach. The basic back-propagation
algorithm adjusts the weights in the steepest descent direction
(negative of the gradient). This is the direction in which the
performance function is decreasing most rapidly. It turns out that,
although the function decreases most rapidly along the negative of the
gradient, this does not necessarily produce the fastest convergence.

In the conjugate gradient algorithms, a search is performed
along conjugate directions, which produces generally faster
convergence than steepest descent directions.

For both LM algorithm and SCG algorithm data division for NN
learning was carried out by randomly subdividing the initial data
set into three sub-sets with the following percentages: 70% for
training set; 15% for validation set; 15% for testing set.

The Training Set is the data set used for the NN training phase by
adjusting the NN weights. The Validation Set is the data set used to
minimize overfitting. No adjustment of the NN weights occurs
with this data set, but only the verification that any increase in
accuracy over the training data set actually yields an increase in
accuracy over a data set that has not been shown to the network
before. If the accuracy over the training data set increases, but the
accuracy over the validation data set stays the same or decreases,
then the NN is being overfitted and the training should be stopped.
The Testing Set is a data set used only for testing the final solution
in order to confirm the actual predictive power of the learned NN.

The validation performance of the NN was calculated by
considering the Mean Squared Error (MSE), as shown in Fig. 6 for
Fig. 6. Neural network validation performance through MSE evaluation.
NN configuration 4-16-1. For every test case, the classification
results are summarized in four confusion matrices, respectively
the training, validation, testing and overall confusion matrix, as
reported in Fig. 7.

Results and discussion

Table 7 report the NN pattern recognition success rate (SR) for
single chip form classification (Class 1–4) and favourable/
unfavourable (F/U) chip type identification using 4- and 3-element
principal component related input feature vectors.

The comparison of the NN SR for favourable/unfavourable
chip type identification with the averaged values of NN SR for
single chip forms classification shows that there is no significant
difference between the two approaches (Table 7). At times,
the NN SR for favourable/unfavourable chip form is slightly
higher than the NN SR for single chip forms and, at other times,
the opposite is verified.

In all cases, moreover, the NN SR values are always higher than
or equal to 80% confirming the capability of PCA in extracting
valuable sensory features for chip form monitoring.

This result is somewhat unexpected because the two-classes
(favourable/unfavourable chip forms) discrimination task is
undoubtedly simpler than the four-classes (four single chip
forms) recognition effort. However, if the single chip form
identification NN SR are examined separately rather than as
averaged values (Table 7), it can be noted that there are some,
though very few, cases where the NN SR is lower than 70%, a
situation never verified for the favourable/unfavourable that
display NN SR always higher than 80%. This confirms that the
four-classes classification task is actually a harder one especially
by the Scaled Conjugate Gradient and the Leave-k-out
algorithms.

As regards NN SR for single chip form classification, the
snarled chip form cluster (Class 1) recognition shows NN SR
values varying from 91% to 99%; for the long chip form cluster
(Class 2) the success rate range decreases, with a minimum
value of 77% and a maximum value of 91%; lower success rate
values were obtained for the short chip form cluster (Class 3),
from 60% to 91%; the loose chip form cluster (Class 4) shows a SR
range varying from 71% up to 90%. The last two extremely
variable ranges demonstrate that these chip form class (Class 3
and 4)are more difficult to be recognized than the others (Class 1
and 2).

Table 7 shows that the Levenberg–Marquardt training algo-
rithm performs significantly better than the Scaled Conjugate
Gradient and the Leave-k-out algorithms both for favourable/
unfavourable chip form identification and for every single chip
form classification. Moreover, the NN SR obtained with Levenberg–
Marquardt algorithm is always >80% whereas with the Scaled
Conjugate Gradient and the Leave-k-out algorithms it can be,
though in few cases, <70% (Table 7).

The NN SR for the 4-input nodes NN configurations is
generally, though slightly, higher than for the 3-input nodes
feature vectors. This indicates that the sensor fusion of the
diverse sensory data (cutting force components and one
component response amplitude in radial direction) provides a
synergic effect on the pattern recognition task, even if limited in
magnitude.

The number of nodes at the hidden layer does not show a clear
impact on the NN SR: the NN SR differences are either null or very
reduced. In the latter cases, at times, the 4-input nodes NN
configurations with higher number of hidden nodes have a higher
NN SR whereas, at other times, this occurs for the 3-input nodes NN
configurations.



Table 7
NN SR results for single chip form classification and favourable/unfavourable (F/U)

chip form identification.

Training

algorithm

NN Config. Class 1 Class 2 Class 3 Class 4 Average

SR (%)

F/U

SR (%)

LM 4-16-1 99 91 84 88 91 92

4-32-1 99 89 89 90 92 92

3-12-1 99 89 91 84 91 87

3-24-1 99 88 93 87 92 87

SCG 4-16-1 99 90 82 83 89 82

4-32-1 99 91 82 84 89 88

3-12-1 93 88 67 78 82 87

3-24-1 97 88 60 77 81 84

LKO 4-16-1 92 83 77 81 83 83

4-32-1 94 77 68 74 78 80

3-12-1 93 80 82 71 82 82

3-24-1 91 82 74 73 80 80

Fig. 7. Confusion matrices for the 4-16-1 LM Class 1 NN configuration. The diagonal cells show the number of cases that were correctly classified and the off-diagonal cells

show the misclassified cases. Blue cell in the bottom right: total % of correctly classified cases (in green) and the total % of misclassified cases (in red). (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of the article.)
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Conclusions

Sensor fusion of digital signals acquired during sensor
monitoring of longitudinal turning operations carried out on
C45 carbon steel was detected with the aim to achieve the single
chip form classification and favourable/unfavourable chip type
identification.
By implementing the principal components analysis (PCA),
advanced signal processing, characterization and feature extrac-
tion were performed, and neural network based pattern recogni-
tion approach was adopted as decision making support system.

The NN success rates in chip form recognition were always
higher than 80%, validating the capability of PCA in extracting
valuable sensory features for chip form monitoring.

The 4 and 3 principal components, obtained through PCA
application were utilized to construct input features vectors for
feed-forward back-propagation neural network training with the
use of three diverse learning algorithm: leave-k-out method (LKO),
Levenberg–Marquardt (LM) algorithm, and Scaled Conjugate
Gradient (SCG) algorithm.

The NN success rates (higher than 80%) obtained with the
application of the three diverse algorithm show an efficient
classification in chip form recognition. This is due to the capability
of PCA in extracting valuable sensory features.

The favourable/unfavourable chip type identification yielded
higher NN SR values than the single chip form classification, as a
four classes (four chip forms) recognition effort is undoubtedly
harder than a two-classes (favourable/unfavourable chip form)
discrimination task.

The NN SR values for the 4-element feature vectors are higher
than for the 3-element feature vectors cases, confirming that
sensor fusion of sensorial data of different kinds can be positively
valuable for pattern recognition.
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By comparing the NN SR obtained for three diverse learning
algorithm, the Levenberg–Marquardt (LM) is demonstrated to be
the most suitable algorithm for pattern recognition decision
making support system.
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